Arslan, B., Lehman, B., Tenison, C., Sparks, J. R., López, A. A., Gu, L., & Zapata-Rivera, D. (2024). Opportunities and challenges of using generative AI to personalize educational assessment.
Frontiers in Artificial Intelligence, 7:1460651.
https://doi.org/10.3389/frai.2024.1460651.
Biling, D. M., & Halstead, J. A. (2016). Teaching in nursing: A guide for faculty, St. Louis, MO: Elsevier.
Bloom, B. S., Hastings, J. T., & Madaus, G. F. (1971). Handbook on formative and summative evaluation of student learning, New York: McGraw-Hill.
Brophy, J., & Good, T. (1986). Teacher behaviour and student achievement, Wittrock,. NLC.
Hambleton, R. K., Swaminathan, H., & Rogers, H. J. (1991). Fundamentals of item response theory, Sage.
Han, K. C. T. (2018). Components of the item selection algorithm in computerized adaptive testing.
Journal of Educational Evaluation for Health Professions, 15:7.
https://doi.org/10.3352/jeehp.2018.15.7.
Hong, S. Y., Goo, E. H., Shin, S. H., Lee, T. K., & Seo, J. Y. (2021). Development the measurement tool on the software educational effectiveness for non-major undergraduate students. The Journal of Korean Association of Computer Education, 24(1), 37-46.
[홍성연, 구은희, 신승훈, 이택균, 서주영. (2021). 대학 소프트웨어 기초교육 효과성 측정도구 개발. 컴퓨터교육학회 논문지, 24(1),37-46.].
Jang, A. K., & Yang, J. W. (2013). A qualitative study on the experiences of students being on and overcoming academic probation.
Korea Journal of Counseling, 14(2), 995-1013.
[장애경, 양지웅. (2013). 대학생의 학사경고 경험과 극복과정에 관한 질적 연구.
상담학연구 14(2), 995-1013.].
Jang, E. E., & Roussos, L. (2007). An investigation into the dimensionality of TOEFL using conditional covariance-based nonparametric approach.
Journal of Educational Measurement, 44(1), 1-21.
Kim, A. R., & Oh, M. J. (2023). An analysis of the effectiveness of the basic mathematics skills program for college freshmen: Focusing on the case of “University K”. Journal of Education & Culture, 29(6), 425-444.
[김아름, 오미자. (2023). 대학 신입생 대상 수학기초학력증진 프로그램의 효과성 분석: K대학 사례를 중심으로. 교육문화연구 29(6), 425-444.].
Kim, D., & Seo, D. (2020). Verification of the accuracy and efficiency of a web-based platform (LIVECAT) for implementing computer-based tailored testing. Journal of the Korea Institute of Information Technology, 18(4), 77-87.
[김도경, 서동기. (2020). 컴퓨터 기반 맞춤형 검사의 구현을 위한 웹 기반 플랫폼(LIVECAT)의 정확성 및 효율성 검증. 한국정보기술학회논문지 18(4), 77-87.].
Kolen, M. J., & Brennan, R. L. (2004). Test equating, scaling, and liking: Methods and practices, Springer.
Lee, J. H., & Cho, K. L. (2021). A study on the prediction model for the ration of mathematics low-performing students in middle school using machine learning. Journal of Educational Technology, 37(1), 95-129.
[이종현, 조규락. (2021). 머신러닝을 활용한 중학교 수학 기초학력 미달 비율 예측모형 탐구. 교육공학연구 37(1), 95-129.].
Lee, S. A., Choi, H. K., Jeong, T. S., Yoo, D. Y., Park, H. Y., Seo, G. J., & Woo, M. Y. (2021). A study on the perception of basic academic ability concepts and policies among Jeollabuk-do elementary, middle, and high school teachers. (Jeonbuk Education 2021-511). Jeollabuk-do Office of Education Research Information Center,
[이순아, 최홍규, 정태식, 유대영, 박휴용, 서길주, 우문영. (2021). 전라북도 초⋅중⋅고 교원의 기초학력 개념과 정책에 대한 인식연구 (전북교육 2021-511). 전라북도교육청교육연구정보원.].
Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., & Perry, R. P. (2011). Measuring emotions in students'learning and performance: The achievement emotions questionnaire (AEQ).
Contemporary Educational Psychology, 36(1), 36-48.
Sadler, D. R. (1998). Formative assessment: revisiting the territory.
Assessment in Education, 5(1), 77-84.
Seo, D. G. (2017). Overview and current management of computerized adaptive testing in licensing/certification examinations.
Journal of Educational Evaluation for Health Professions, 14:17.
https://doi.org/10.3352/jeehp.2017.14.17.
Seong, S. H., & Han, Y. Y. (2023). A study on the current state and adaptation of the cross-entry students between the field of liberal arts and science: Focusing on the case of S university.
Korean Journal of General Education, 17(2), 307-324.
[성신형, 한윤영. (2023). 문⋅이과 교차지원 현황 및 대학적응에 관한 연구 - S대학교 사례를 중심으로.
교양교육연구 17(2), 307-324.].
Seong, Y. G., Lee, H. B., Kim, S, S., Jeong, M. R., & Park, M. J. (2020). The direction of curricluim development for the learning of academically low achieving students : With reference to high school credit system (Ministry of Education - Commissioned - 2020-05). Ministry of Education,
[성열관, 이형빈, 김성수, 정미라, 박민정. (2020). 기초학력 보장을 위한 교육과정 개발 방향 연구-고교학점제를 중심으로 (교육부-용역-2020-05). 교육부.].
Seoul National University Education Research Institute. (2011). Dictionary of educational terms, Seoul: Hawoodongseol Publishing,
[서울대학교 교육연구소. (2011). 교육학용어사전. 서울: 하우동설.].
Thompson, N. A., & Weiss, D. J. (2011). A framework for the development of computerized adaptive tests. Practical Assessment, Research and Evaluation, 16(1),
https://doi.org/10.3390/electronics10091020.
Tsutsumi, E., Kinoshita, R., & Ueno, M. (2021). Deep item response theory as a novel test theory based on deep learning.
Electronics, 10(9), 1020.
Usher, E. L., & Pajares, F. (2006). Sources of academic and self-regulatory efficacy beliefs of entering middle school students.
Contemporary Educational Psychology, 31:124-141.
Wainer, H. (2000). Introduction and history, Edited by Wainer H, Dorans N. J, Eignor D, Flaugher R, Green B. F, Mislevy R. J, Steinberg L, Thissen D, Computerized adaptive testing: A primer, 2nd ed. 1-20. Mahwah, NJ: Erlbaum.
Weiss, D. J., & Kingsbury, G. G. (1984). Application of computerized adaptive testing to educational problems.
Journal of Educational Measurement, 21(4), 361-375.
Weiss, D. J., & Sahin, A. (2024). Computerized adaptive testing: From concept to implementation. Guilford Publications.
Wise, S. L. (2014). The utility of adaptive testing in addressing the problem of unmotivated examinees. Journal of Computerized Adaptive Testing, 2(1-4), 1-17.
Yeung, C. K. (2019). Deep-IRT: Make deep learning based knowledge tracing explainable using item response theory. arXiv preprint arXiv, 1904.11738.
Zhang, J. (2007). Conditional covariance theory and DETECT for polytomous items.
Psychometrika, 72(1), 69-91.